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The sufficient conditions for the asymptotic stability and instability of the equilibrium position of a holonomic mechanical system 
acted upon by the time.-dependent forces are determined. Problems of the stabilization of the calculated motion of a gyroscopic 
system on a moving base and of the conditions of stability of the equilibrium position of a mechanical system with variable masses 
are solved. Some examples are considered. Copyright © 1996 Elsevier Science Ltd. 

1. Consider  a ho lonomic  mechanica l  system with t ime- independen t  constraints,  the posit ion of  which 
is def ined by the general  coordinates  q ~ R ~. T h e  kinetic energy of  the system 2T = q'A(q)ft, where  
the vec tor  t~ = dq/dt is denoted  as a co lumn vector ,  A(q)  is an n × n matrix, positive definite for  all q 

R ~, so that  we have the matrix inequal i tyA (q) I> A = a0E, a0 = const > 0, and E i s  the iden t i~  matrix. 
Hence fo r th  a p r ime  denotes  t ransposi t ion,  II q II is the no rm in R n and II q II 2 = q q = q2 + q2 + . . .  + q2. 

We will assume that  quasipotential  forces Q1, gyroscopic forces Qz, and dissipative-accelerating forces 
Q3 act on the system, as given by 

. ~ l - l ( q ) .  
Q l = - g ( t , q )  ~q , Q2=G(t ,q ,  il)il, G ' = - G ;  Q3=-F( t ,q ,  il)il, F ' = F  

where  G and F are', n x n matrices,  g, H ~ C 1 are  scalar non-negat ive  functions, and 3Fl/0q = (31-I/~ql , 
• . . ,  ~n/~qn)'. 

T h e  mot ion  of  t]he system can be descr ibed by Lagrange ' s  equat ions 

 -Tq (1.1) 

Suppose  31-l/3q := 0 when q = 0 and means  that  the system has zero posi t ion of  equil ibrium c) = q 
= 0. We will consider  the p rob l em of  investigating the stability c~ = q = 0 using genera l  theorems  of  
asymptot ic  stabili~: and instability for  ordinary  differential  equat ions f rom [1]. 

Solving Eqs  (1.1) fo r / j ,  they can be r ep resen ted  in the fo rm 

dq _ dil ~I-I _, . 
d"¥ - q, ~ = {q'B4} - gA-' ~ + A Gq - A -l Fi 1 (1.2) 

where  {q'Bc)} is a set of  n forms,  quadrat ic  in q. 
We will assume that  all the funct ions on the  r ight-hand side of  Eqs (1.2) are continuous,  bounded  

and satisfy a Lipsc]hitz condit ion with respect  to q and q for  each Ix > 0 in the range  {t ~> 0, II t) II ~ Ix 
< +0% II q II ~< ~t}. Equat ions  (1.2) are then  p r e c o m p a c t  and regular  [1, 2], and the limit equat ions to 
t h e m  have the analogous fo rm [1] 

dq =q, clq ~q  + A_lG.4_A_lF.q 
d"]" "~" = [q'B4} - g.A-' (1.3) 
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where g., G,, F,  are the limits to the corresponding values from (1.2), in particular [2] 

g.(t,q)= lim Ig(t~ + x,q)dx (1.4) 
tk -" )+~ 0 

We will assume that, for all t e R ÷, sufficiently small II q II and II q II, the following relations are satisfied 

O<go<~g(t,q)<~g 1, x---(t,q) ~</=const (1.5) 

~t (t'q)A(q)+2g(t'q)F(t'q'El)>~ a°E' (a 0 =const >0)  (1.6) 

Then, for the derivative of the function V = (qL4q)/(2g(t, q)) + l-l(q) - rl(o), in view of Eqs (1.1), 
for sufficiently small II q II and II q II we have the limit 

~/=-(~-:-g+il'~-:gl(El'adl)12g2-(EI'FEI,/g<~-b 0 IlEll[2 <--- 0 
~, ot oq ) 

(b 0 = const > 0) 

The set {o~(q) = b0 II q II 2 = 0} -= {q = 0}, defined by this limit [1], contains only those solutions of 
the limit equations (1.3) (as follows directly from their structure), for which we have the relations 

El(t)=--O, q(t)=qo=const: g.(t, qo)'~q (qo) =0 

But it follows from the first condition of (1.5) and definition (1.4) that for each Ix > 0 for almost 
all t e [0, Ix], the function g.(t, g) I> go > 0. Hence, these solutions will be the only solutions for 
which 

~lq 
q( t )=0,  q(t)=qo=const; -x--(q0)=0 

oq 

or the equilibrium positions of the initial system (1.1). 
From the theorems given in [1] we have the following sufficient conditions for the stability of the 

equilibrium position of system (1.1). 

Theorem 1.1. We will assume that 
1. the function rl(q) has a minimum when q = 0; 
2. the equilibrium position of system (1.1) q = q = 0 is isolated, II ~1-I/~ II > 0 for q ~ {0 < II q II ~< 

~5); 
3. the function g(t, q) and the dissipative accelerating forces are such that relations (1.5) and (1.6) 

are satisfied. 
Then, the equilibrium position (1.1) q = q = 0 is uniformly asymptotically stable. 

Theorem 1.2. If instead of conditions 1 and 2 of Theorem 1.1, the following conditions are satisfied: 
1". I-l(q) has no minimum when q = 0; 
2'. in the region {q: 0 < II q II ~< 5, Fl(q) < 17(0)} there are no equilibrium positions of system (1.1), 

then the equilibrium position (1.1) q = q = 0 is unstable. 

Note. It is obvious that for the case of uniform continuity [1] it can be assumed that conditions (1.5) and (1.6) 
of Theorems 1.1 and 1.2 are satisfied when q = q = 0. 

The results obtained previously in [3] enable us to investigate the stability of the equilibrium q = q = 0 
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with respec t  to the genera l ized  velocities and some of  the  genera l ized coordina tes  (qb q2, • • • , qm) 
(m ~< n) [4]. For  this we will use (ql = (qt, q 2 , . . . ,  qm)', q2 = (qm+b qm+2, • • • , q~)', II ql ii 2 = q2 + q2 
+ - - .  + q2m, II q2 ii 2 = q2+1 + q2+2 + . . .  + q2, h: R ÷ ---> R + is a H a h n - t y p e  funct ion [4]. 

We will a ssume tha t  the  r ight-hand sides of  (1.2) are  cont inuous,  bounded  and  satisfy the Lipschitz 
condi t ion with respec t  to q and ql for  each Ix > 0 in the region {t I> 0, II q II ~< Ix, II ql II ~< Ix, 0 ~< U q2 II 
< +0.}. Then ,  Eqs (1.2) are p r e c o m p a c t  in tl and ql with respect  to the arbi t rary  cont inuous funct ion 
q2. R + ~ Rn-m [3]. 

Repea t ing  the previous  discussion we can derive the following result  f rom T h e o r e m  5 of  [3]. 

Theorem 1.3. We will a ssume that  
1. the funct ion H(q)  - II{0) is posit ive definite in ql, l I (q)  - H ( 0 ) / >  h(ll ql II), i.e. for  all q e F0 = 

{[I ql II ~< 50, 50 > 0, 0 ~< II q~ II < +oo); 
2. in the  region F0 c~ {q: H(q)  - H(0)  > 0} system (1.1) has no equi l ibr ium posit ions and for  all q 

F0 n {q: H(q)  - I I (0)  = e > 0} the inequali ty II 31I/Oq II/> ~ = 8(e) > 0; 
3. the  funct ion g(t, q)  and  the dissipative-accelerating forces are such tha t  for  all t e R ÷, {q: II q II ~< 

50, 50 > 0) x F0 re la t ions  (1.5) and (1.6) are satisfied. 
Then ,  the equi l ibr ium posi t ion (1.1) q = q = 0 is uni formly asymptot ical ly stable. 

Notes. 1. When g = g(t), ~,(t) >~ 0 conditions (1.5) and (1.6) are satisfied if g(t) <~ gl and Q ~  ~< --b0 II q II 2, 
i.e. Q3 are the force.,; of complete dissipation. The result on the asymptotic stability q = q = 0 with respect to q 
under these conditions was derived previously in [5]. When g = g(t) conditions (1.5) and (1.6) take the form [6] 

0 < g  0<<-g(t)<~gl, g(t)A(q)+2g(t)F(t,q,q)>~ao E 

It can be shown that if this condition is satisfied for all t e R +, (t~, q) e R 2, and also if Ol-I/Oq ¢ 0 for all q ¢ 0 
and II(q) ---> +oo when II q II --> +o., the equilibrium position of the system q = 0 is uniformly asymptotically stable 
as a whole. 

2. Condition (1.6) may be satisfied in the time interval [ct, [I] for which 3g/Ot > 0, if, even in this interval, the 
forces Q3 are accelerating forces Q'~ > 0. This characteristic can be used when solving problems of the stabilization 
of the equilibrium position of a controlled mechanical system for "energy pumping" when t ~ [~, 1~]. 

Example 1.1. Consider a mathematical pendulum with a thread of variable length l(t) undergoing angular 
oscillations in a uniform gravitational field with constant acceleration go under the action of a viscous friction torque. 
Denoting the angle of deflection of the pendulum from the vertical by 9, we have the following expressions for 
the kinetic energy and generalized forces 

2T=m(12(t)ip2 +]2(t)), Q=-mgol(t)sintp-k(t,~p,(p)12(t)9 

where m is the point mass and k(t, 9, ~) is the coefficient of viscosity. 
The equation of the oscillations of the pendulum can be represented simply in the form of Eq. (1.1) of a system 

with one degree of fleedom. Hence, using Theorem 1.1 we can find the following sufficient conditions for uniform 
asymptotic stability of the lower position of equilibrium of the pendulum ~ = tp = 0 (the condition for the pendulum 
to be undriven) 

0</0<~l(t)<~l I, 31(t)÷2k(t,O,O)m-II(t)>~lo >O 

Example 1.2. Con.,;ider a symmetrical heavy body with a fixed point, placed in a uniform gravitational field of 
variable intensity g .-= g(t). The centre of gravity of the body lies on the axis of symmetry (the x axis), the mass 
of the body is m, the principal moments of inertiaA and B = C, and the coordinate of the centre of gravity is x0 
> 0. The position of uhe body with respect to an inertial system of coordinates withz axis directed vertically upwards 
will be defined by the Euler angles 0, 9, ¥ in the usual way [7]. The coordinates ~ is cyclic, by ignoring which we 
obtain the Routh function [7] R = R2 + R1 - Wwith reduced potential energy 

W = mg(t)x 0 (1 - Fl(0,tp)) +c2G(0,tp) / 2 

I-l(~p,0) = 1 -sin0sin 9, G(0,tp) = ((Asin 2 ~0 +Bcos 2 tp)sin 2 0 +Bcos 2 0) -I 

where c is the cyclic constant. 
We find that OW/aO = OW/O9 = 0 when 0 = rd2, 9 = ~2,  so that we have the steady m o t i o n s ,  = const, 0 = 0, 

0 = ~/2, 0 = x/2 for which the x axis is directed vertically upwards. 
We can derive the following representations 
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i)W I OO = g( t, O, tp )OH l ~O, ~)W l Otp = g( t, O, tp )OH l Otp 

g(t,0,tp) = c 2 (A - B)sin 0sin qX3 2 (0,q)) - mg(t)x 0 

This enables us, using Theorem 1.2, to determine the moments of the dissipative forces of the form Mo = 
-kl.(t)~l, M, = -k2(t)~ which stabilize these vertical steady rotations of the body. We obtain the expression 2R 2 = 
B(O" + ~ )  for the function R2 when 0 = tp = It/2. Then, conditions (1.5) and (1.6) in this problem can be written 
in the form 

0 < a 0 <~ c 2 (A - B)- mg(t)A2xo <~ a I 

2c2(A-B)ki(t)-A2Bmg(t)xo >~a o (i=1,2) (1.7) 

We can conclude from Theorem 1.2 that each steady motion 0 = tp = 0, 0 = tp = ~/2, co~esponding to the value 
of the cyclic constant c satisfying conditions (1.7), is asymptotically stable with respect to O, ~ 0 and 9. 

Theorems 1.1 and 1.3 on the stability of the equilibrium position can also be extended to the case 
of quasipotential forces of the form 

Ql (t, q) = - D(t, q)A -~ (q)~H(q) I ~q (1.8) 

where D(t, q) is a symmetric n x n matrix such that for all t e R + and sufficiently small (q, q) e {11 q II 
~< 8, II q II ~ ~, ~ > 0} we have the relations 

I 3dii(t'q) ll<~d2=const d°E<~D(t'q)<~dlE ( 0<d°  ~< dl)' Oq 

AD-' ~ , (F-G-i )D D - ' A ) + ( F + G - A D - '  ~ t  l D - I A  >~ (1.9) 

(a 0 = const > 0) 

Under these conditions, by virtue of the equations of motion for the derivative of the function 2V = 
qAD-1Aq + 2II(q) for sufficiently small II q II and II q II we can obtain the limit 

I#(t,q,q) ~< -b  0 II q 112 ~< 0 (b 0 = const) 

Hence it can be shown that Theorems 1.1 and 1.3 retain their formulation for the cases of forces Qx 
of the form (1.8) with conditions (1.5) and (1.6) replaced by condition (1.9). 

2. We will consider the problem of determining the control force which makes the calculated motion 
of the gyroscopic system on a moving base stable in the formulation used previously [8]. 

A gyroscopic system is defined as a system constrained by constraints that are holonomic and time- 
independent during motion with respect to the base, containing r symmetrical gyroscopes. Its position 
relative to the base is specified by n generalized coordinates ql, q2, • • •, qn and r angles of the natural 
rotations of the gyroscopes tpl, 92, • • •, %. The base of the gyroscopic system performs a specified motion 
with respect to inertial space. Additional holonomic time-dependent constraints ensure constant 
velocities of the natural rotations of the gyroscopes ~ = tp0 = const. 

The equations of motion of the system, converted from Lagrange's form are [8] 

~T 0 OB d 3T 2 3T2 =Q+Dila  (2.1) 
dt i)q Oq Oq Ot 

where Q = Q(t, q, il) are generalized forces, while the other quantities occurring in the equation are 
found from the expression for the kinetic energy of a system in absolute motion 

T~ = T2 + Tr + To , 2 Tz = i f  A ( q ) 4 
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bB OB" 
T ! = B'(t ,q,(po)i !, T O = To(t,q,i.po ), D . . . .  D" ~q' ~q 

where A and B are the corresponding n x n matrix and n x 1 column matrix. The generalized forces 
are found from the following conditions. 

1. The equations of motion (2.1) allow of the theoretical motion 

¢ = q = 0 (2.2) 

For this it is necessary to assume that for all t /> 0 

Q ( t , o , o ) = [ ~  t ~TO] (2.3) Tqq L=o 
2. The resultant of the generalized forces Q(t, q, {1) is the set of forces of the gyroscopic system Qc 

= Qc(t, q, il) and the special correction forces Qk = Qk(t), which give rise to the motion (2.2). Hence 

Q(t,q, ii) = Qc(t,q, il) + Qk (t), (2.4) 

Qk(t) = [ ~  b--~T° ] - Q,.(t,0,0) 
~q ]q=0 

3. The forces of the strictly gyroscopic system Qc are a set of potential forces with force function 
U = U(t, q) and dissipative forces Qa(t, q, il), linear with respect to q 

Q,.(t,q,gl) = ~U(t,q_____~) ~ Qa(t,q,gl) (2.5) 
Oq 

Q~(t,q, ii)il <<- -~l'F(t,q)il <~ 0 

4. The action of the potential forces of the strictly gyroscopic system, the correction forces and the 
inertial forces can be represented in the form 

~U+Qk~ oTO 3B 3rl 0 Orl0 
= g - - ,  = 0  for q = 0  (2.6) 

Oq Oq 3t Oq Oq 

where l-I0 = II0(q) is a certain scalar function and g = g(t, q) is a scalar coefficient, which satisfies the 
relations 

0 < go <~ g(t,q)<~ gl, II 

Propositions 1~; do not differ from the corresponding propositions in [8]. Proposition 4 is a particularly 
special one compared with the corresponding one from [8]. By assuming that conditions (2.3)-(2.7) 
are satisfied and also requiring that the conditions of Theorem 1.1 must be satisfied, we can determine 
the conditions for' gyroscopic systems on a moving base to be stable, which differ from those given 
previously in [8] by using the Lyapunov function but with a derivative of constant sign and not a derivative 
of fixed sign. 

We will consider this difference using the following example from [8]. 

Example 2.1. Con:rider a Foucault gyroscope with two degrees of freedom of the second kind. The symmetrical 
rotor of the gyroscope is placed in gymbals (floating) and has a constant natural angular velocity tpt0 relative to it, 
and I is the axial moment of the rotor. A right trihedron O~rl~ having an absolute angular velocity u = (ug, un, u;) 
is connected with the base of the instrument, and the velocity of the origin of coordinates is v 0. The gymbals of 
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the gyroscope are placed in bearings, the axis of which coincides with ~, and the axis of natural rotation of the 
gyroscope z is perpendicular to the axis of rotation of the gymbals ~ (situated in the plane and passing through 
the point 0). We will assume that the centre of gravity of the system coincides with the origin of coordinates 0, and 
that Oxz~ is a trihedron of the principal axes of inertia of the gymbals. A and B are the moments of inertia of the 
system with respect to ~ and z, and the moment of inertia of the gymbals with respect to the third axis x is such 
that the moments of inertia of the system with respect to x and z are equal. We will denote by a the angle between 
the 11 axis of the gyroscope, where the positive direction of the angular velocity of the gymbals t~ coincides with 
the positive direction of ~. The following moments act with respect to the axis of rotation of the gymbals ~: the 
moment of the forces of viscous resistance k(t~ + to;) and the correction moment M~(t). 

We will assume that the Foucault gyroscope is placed on an object which, at a given instant, is at latitude ~ and 
moving over the surface of the Earth along a course ~. with velocity v with respect to the Earth, so that [8] 

u~=0,  un=fl+ vc°s----~k u ; = 0 ,  t o ; = L c o s k  
Rcosg '  R 

where R is the Earth's radius and D is the angular velocity of the Earth. We will assume that on the basis of 
information on the velocity v and the course k a correction moment ~ ( t )  =/co R-lcos ~. is applied to the gymbals 
of the gyroscope. 

Then, the equations of motion of the gyroscope admit of a particular solution in which the axis of the gyroscope 
z constantly indicates the direction of the world axis [8]. Using Theorem 1.1 we can find that this position will be 
uniformly asymptotically stable provided that 

lg10fl+ 19100 sink >~k0 ' 2k+ (o sin;k/costp)'costp A>~k 0 >0 (2.8) 
Rcos9 D.Rcostp +v sin~. 

Note that whereas the first inequality imposes a limit on the value of the velocity and direction of motion of the 
object, the second imposes a limit on the change in the velocity and the course of the object. Conditions (2.8) 
correspond to the actual parameters of a ship and an aircraft. 

Comparing conditions (2.8) with the corresponding conditions from [8] we see that the first of the inequalities 
of (2.8) is identical with the corresponding condition from [8]. Instead of the second inequality of (2.8) it is required 
in [8] that a different relation must be satisfied, namely 

k2Rcos p ( lat,,on ) 
°max Ai910 < max ~X/----~---- + 1 - I j (2.9) 

The second inequality of (2.8) is preferable since it must follow from (2.9) that the permissible velocity of the 
object must decrease as the kinetic moment of the rotor increases. 

3. The  mot ion  of  a holonomic  mechanical  system with variable masses mx = m~(t) (k = 1, 2 . . . . .  
N) with constraints that  are independent  of  time and with n general ized coordinates  q = (qx, q2, • • •, 
qn)', acted upon by quasipotential,  gyroscopic and dissipative forces, can be described by the equat ions 
[9] 

d o (OT)_OT= OH Gq-Fit+ut (3.1) 
-d't t, O;T ) Oq -g 0--4 + 

2T=il'A(m(t),q)~ i, A'=A, g=g(t,m(t),q) 

H=ll(m(t),q), G=G(t,q,il), G'=-G 

F = F(t,q, il), F'= F, W = ~F(t,q, il) 

where ~F(t, q, q) are generalized reactions due to the motion of separate and connected particles inside 
points of the mechanical system, separated or connected to points of these particles, and d°/dt is the 
derivative for fixed masses. 

We will assume that the point masses of the system do not vanish and are bounded 0 < m ° ~< mz(t) 
~< m I ()~ = I, 2,..., N) as a result of which, in general, we have aoE <<-A(m(t), q) <<- alE (0 < ao <<- 
al); for all values of mz within these limits Oil(m, q)/~ = 0 when q = 0 and ~F = 0 when 0 = q = 0. 
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Then system (3.1) has an equilibrium position 4 = q = 0. 
When the conditions g(t, m, q) 3 0, ll(m, q) 5 0 are satisfied, we can use the function V = T/g + ll 

to investigate the stability of 4 = q = 0. By virtue of the equation of motion (3.1) this function has the 
derivative 

By requiring this; derivative to be non-positive and by also requiring the corresponding conditions of 
the theorems from [l, 31 to be satisfied, we can, as previously, obtain different sufficient conditions for 
complete and partial asymptotic stability of the equilibrium position of system (3.1) 4 = q = 0, for 
example, the following theorem. 

Theorem 3.1. We will assume that the following conditions are satisfied for system 3.1. 
1. the function II(m, q) is such that ll(m, 0) = 0, ll(m, q) 3 h(ll q 11) (or II(m, q) b h)(e q1 II); this func- 

tion does not increase with respect to m when the point masses of the system change, ~‘(illl/~m) =S 0; 
2. there are no equilibrium positions for small (11 q 11) ( or when n(m, q) > 0); II aWm, q>& II > W 

> 0 for 11 q II = E > 0 (or for all q E {q: ll(m, q) 3 E 3 0)); 
3. reactions do not occur when the point masses of the system change; 
4. for all t E R+, small 114 ll and small 11 q II (or small 11 q1 11) the following relations are satisfied 

o<g() ag(Lmq)sg,, 1 i$t,nl.s) 1s I=COnSt 

($+i’-$-)A+ZgF-g$To&. a,=const>O 

Then the position 4 = q = 0 of system (3.1) is uniformly asymptotically stable (respectively, uniformly 
asymptotically stable with respect to 4 and ql). 

In the same way we can investigate the stability of the motions of mechanical systems with variable 
masses, to which the Routh-Lyapunov method [lo] can be extended. 

Example 3.1. Consider the motion of a solid of variable mass m = m(t) with a tixed point 0, situated in a Newtonian 
field of force. We will tssume that the outflow and inflow of particles are such that the main axes of inertia of the 
body with respect to the fixed point x, y, z are fixed in the body, the sum of the moments of the reactions with 
respect to the fixed point is equal to zero, and the centre of inertia of the body remains on the z axis of the body 
all the time. 

We will assume that the 6 axis of the system of coordinates O{r&, tixed in space, is directed along the radius 
vector 0 -4 where O* is the centre of attraction. We will denote by yl, ~2, ~3 the direction cosines of the angles of 
the axis C, in the onyi: system,Ai are the principal moments of the body with respect to the Ox, Oy and Oz axes,p, 

q and r are the projections of the angular velocity of the body on the Ox, Oy and Oz axes, R = 1 OO* I; g = mlR2, 

and z, is the coordirrate of the centre of mass of the body with respect to the Oz axis. 
We will assume that, in addition to the forces of attraction, forces of viscous friction act on the body, the moment 

of which with respect to the point 0 is M’ = (Mx, MY, Mz) with the limit 

Mxp+Myq+MZrS-(vl(t)p2 +v2(r)q2 +v3(r)r2), Vi(r)20 

Assuming that R ir; sufficiently large compared with the dimensions of the body, we obtain an expression for the 
potential energy of the body from the corresponding expression for the constant mass [ 1 l] 

n=mqz,yj+3~(2R)-‘((A~-A~)~:+(A:!-A~)y~)-mgi, 

With the above assumptions we obtain that the body has the following positions of equilibrium 

p=q=r=O, Yl =y2 =o, yo =I (3.2) 

for which the Oz axis of the body is directed along 06. Here the function ll is positive definite with respect to yI 
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and T2 in the neighbourhood of the position T1 = )'2 = 0, )'3 = i provided that 

Pl =3gR-I(Ai -A3) -mgzc  ~ e > 0  

P2 = 3g R-I (A2 - A3 ) - mgzc >I e > 0 

Taking into account the expression for the kinetic energy of the body 2T = AlP 2 + A2q z + Aar 2 we have, from 
Theorem 3.1 the following conditions for which the positions of the body (3.2) will be uniformly asymptotically 
stable 

O<e<~Ai(t)~Ao, (Pl lP2)  <~0 

(2vi(t)-Ai(t))P2(t)+p2(t)Ai(t)>~[~O > 0 (i = 1,2,3) 

If, instead of the conditionp2 I> e > 0, we have the conditionp2 ~< -e < 0, then when all the remaining conditions 
are satisfied the set of equilibrium positions (3.2), defining the orientation of the Oz axis of the body along 0~, is 
unstable. 

4. We will investigate the problem of the asymptotic stability of the equilibrium position q = q = 0 
of a holonomic mechanical system (1.2) in the case of potential forces Q1 = --0H(t, q)/Oq, assuming 
that 0H(t, q)/Oq = 0 when q = 0. 

Suppose ~t > 0 is a sufficiently small number, defined by the stability domain investigated F0 = 
{11 qll ~ ~t, II q II ~< P-}. We will de te rmine  the  functions 

1 0H(t, q) ) t 
(x(t)=sup I-l(t,q-----~) 0-"~---- when Ilqll~<~t , ~( t )=  I ot(x)dx 

0 

and we will assume that the function 13(t) is bounded, I I~(t) I ~< 60 for all t ~ R +, while the dissipative 
forces are such that for all t e R +, (q, q) e F0 

ot( t )A(q)+ 2F(t ,q ,  i l ) ~  aoE, a o = c o n s t > 0  (4.1) 

Then, we can obtain the following limit for the derivative of the function V = exp(-13(t))(T + 17) 

V = e x p ( - ~ ( t ) ) ( - a T -  ~l'Fft) <~ -Yo  II q II 2 ~< 0 ('to = const > 0) 

Hence, in the same way as for Theorem 1.1, we have the following sufficient conditions for asymptotic 
stability when there are time-dependent potential, gyroscopic and dissipative forces acting on the body. 

We will assume that 
1. the potential energy is such that for small II q II we have 

h~ (11 q II) ~< Fl(t, q) ~< h 2 (11 q II), II a n  / 0q II/> 8(~) > 0 

for II q II = e ~> 0; 
2. relation (4.1) holds. 
Then the equilibrium position q = q = 0 of  the system is uniformly asymptotically stable. 
This result is presented in [12] for the case of a mechanical system with variable masses. Other 

conditions of stability with respect to (q, q) and asymptotic stability with respect to q are derived in 
[13, 14]. 
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